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Abstract. A simple model of discrete sequential fragmentation consists in first breaking a unit
segment intay (> 2) pieces of equal length. A fragment is then selected at random among all
fragments and broken in turn intppieces of equal length and so ad infinitum Fragments of
sizeL =g *(s=0,..., f) are thus produced aftgt fragmentation events. The distribution of
the ensemble averaged number of fragments of ‘sizg’calculated exactly in terms of signless
Stirling numbers of the first kind and shown to tend asymptotically to a Poisson distribution
with parameteng/(g — 1)) log(f). An asymptotic lognormal distribution is thus found for the
distribution of L.

1. Introduction

Fragmentation phenomena are encountered in numerous scientific fields from nuclear to
astronomic scale, in real or in abstract spaces (see for instance Grady and Kipp 1985,
Derrida and Flyvbjerg 1985, Brown 1989, Redner 1990, Mekjian 1990, Mekjian and Lee
1991, Englman 1991, Botet and Ploszajczak 1994, Elatali1995 and references therein).
Numerous thorough experimental and theoretical efforts are devoted, among other things, to
the characterization of their ubiquitous properties, such as their scale-independent properties.
Various semi-empirical distributions have been proposed to describe the distributions of the
fragment sizes: Mott, Weibull, exponential,. , lognormal. Bakeet al (1992) have recently
argued that the lognormal distribution (Aitchison and Brown 1957) is particularly suitable
in that context. It seems interesting, thus, to investigate the distributions of fragment sizes
in simple and exactly soluble models, with a small number of free parameters. One such
model of discrete sequential fragmentation is described in the present paper. It is inspired
by a model of 2-dimensional cellular structures generated by a sequential fragmentation
procedure: at a given time, one cell is selected at random among all cells and broken into
two cells and the process is iterated (Delannay and Lér @894). Strongly disordered
structures, which have remarkable topological properties, are thus constructed. A first
simplified approach to the characterization of their metric properties consists in breaking the
selected cell into two cells of equal areas. For further simplification, the starting structure
is a hexagonal 2-dimensional structure with cells of identical areas. A straightforward
generalization of the latter fragmentation process yields the model investigated in the
following.
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2. A soluble model of discrete sequential fragmentation

The present model is more precisely a particular case of the usual rate equation approach
which is used to describe fragmentation. The system is supposed to break up sequentially
and no recombination is allowed. The discrete set of all possible fragment sizes can be
arranged in order of decreasing sizes and indexed by an integbe size indexed by

s = 0 being the initial maximum size. The functionj(f) yields the average number of
s-fragments afterf fragmentations. The evolution of the distribution of fragment sizes is
then given by (Petersoet al 1985):

s—1
no(f +1) = ns(f) = —a()n,(f) + Y _ a(sHb(s|sng(f) €y
§'=0

where the numbey of fragmentations plays the role of time, so that the left-hand side term

of (1) is just analogous tén,/dt. In (1), the functioru(s) is the rate at whichk-fragments
disappear by breakup while(s|s") is the rate at which-fragments are produced by the
breakup ofs’-fragments. Both are assumed to be independerft dh the present work, we

focus on the case where all fragments have the same probability to be selected for breakup.
In other words, the rate functiom(s) is independent of and equals then/In(f), where

m(f) is the total number of fragments after exacifybreakups. Summing (1) over all
possible sizes yields:

Yy (NOCZia b6l

m(f+1 =m(f)+ 2
f f S e (f) 2
The sum)_° ., b(s|s") is just the average number of fragments produced during

breakup of as’-fragment. Let us suppose that this quantity, called heréndependent
of f is also independent of: ¢ is a constant all along the cascade of fragmentations. The
average number of fragments is thus:

m(f)=1+@@-Df 3

Only the binary casdqg = 2) is treated, usually because of its simplicity. In some
experiments, however, the proper valuegfif any, is still in debate. For example, in
nuclear experiments of heavy-ion fragmentation the fact is that a controversy holds between
proponents of the sequential binary fragmentatipn= 2) and those of multifragmentation
(g = oo0) (Grosset al 1982, Borderieet al 1992).

One of the new results presented below shows that observable quantities can be found
in some cases which allow experimental determination of the paragetesr now, let us
replacea(s) by 1/(1+ (¢ — 1) f) in equation (1) to write the rate equation as:

A 1))[
Equation (4) can be considered as a matrix recurrence equation acting on therugttor
whose components aig (f). The dimension ofn after any number of fragmentations

can be extended beyond its minimum value to any desired value by adding as many zeros
as necessary. A denotes the lower triangular matrix with(s|s’) as its(s, s’) element

(s =2 s+ 1), (4) may thus be rewritten as:

n(f+1) = ! [fl . } n(f) 5)
Cf+ /g -1D) (-1 '

s—1 b /
frs(H+Y (S'Sl) mf)]. @)
s'=0 q-—
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The solution of (5) then writes:
f-1 A
n(f) = Cf(‘i){ 11 [kl + ] }n<0> (6)
k=0 q-1

where the coefficienC;(g) is:

- 11t r1/(g —1)
/@ H[ +q—1] C(f + (/g — D)) )

The produc{ [/ 5[k +x] = /5 can be expanded as a finite sum of powers wfith

signless Stirling numbers of the first kind, noted ha?ﬂ)h as coefficients (Abramowitz
and Stegun 1965, Johnsehal 1992):

f-1 f o
[Tk +21=2 151, (8)
k=0 j=0

We recall that thqs}j)| satisfy the following recurrence relation:
1571 = (f = DIS;2l + 1875 ©)

with |S§”| = 1 and|S{”| = 0 for f > 0 among others (Abramowitz and Stegun 1965,
Johnsonret al 1992). Asl and A commute, the product of matrices which appears in (6)
can be expanded in the same way as the product (8), simply repladigd /(¢ — 1):

f-1 A S X Aj
Kl + =Y s .y 10
g[ (q—l)} j;lfl(q—l)f (10

Under the assumption that the overall rate of breakup is independent of the size during
this sequentiay-nary fragmentation process, the average size distribution of the fragments
is thus seen to be written down naturally as a finite combination of Stirling numbers:

Ain(0)
(q—-1J°

o
n(f)=Crq) Y 1S/ (11)
j=0

The remaining technical problem is to be able to calculate the vefttng0), given
the initial state of the system(0).

3. An explicit solution for a simple model of sequentialg-nary fragmentation process

Hereafter, we have chosen to investigate a simple model of sequeméaly fragmentation
process: consider a segment of length 1 and break it firsyifatg> 2) pieces of length Jg.

A fragment is selected at random amongstghlatter fragments and is broken in turn into

q pieces of length Ag%. The process is then pursued: at every step a fragment is selected
at random amongst all fragments and broken ipteragments of equal length = ¢~*.

We will investigate the ensemble averaged distributipty’) of the number of fragments of
lengthL = 1/¢° after f fragmentation event&s =0, ..., f), wheres = —log(L)/ log(g)

is the size index (section 2). As a fragment of lengily’lis broken intog fragments

of length I/¢"*Y, the matrixA is filled up with elements equal to zero, except for the
elementsA, 1,i = g. The matricesA’/ have all the same sort of structure with elements
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(A4 = q’ as the sole non-zero elements. We deduce from (11) that the average number

of s-fragments afterf fragmentations igs =0, ..., f):

n,(f) = Cr(q) [qfl} 1S, (12)

Using (12) and definingdy, (x) as:
f-1 1

H, (x) = ; e (13)
it is straightforward to deduce that the averggg is:

(s); = xHp, (x) (14)
with x = g/(g — 1). Similarly:

(s = (D% = xHp (x) = x*Hp, (x) (15)
and

((s = (s0)°) 5 = xHp, (x) — 3x°Hp, (x) + 2 Hp, (x). (16)

The Hy, (x)s are finite constants fon > 1 when f — oo while Hy, (x) is asymptotically
equal to logf) (Abramowitz and Stegun 1965). The first three moments about the mean
are thus asymptotically equal to:

b= L log(). (17)

This suggests that the asymptotic distributiork et s —1 (s —1 because prab = 0) = 0) is

a Poisson distribution. For proving it, we calculate the generating funGion= ((1+r)")f
whose expansion when— 0 yields the factorial moments;,; = (]'[Z;(l)[k + pl)s. Fora
Poisson distribution of parameter G(¢) is equal to & with Wi = A". Let us recall that

the classical moments are linearly related to the factorial moments via Stirling numbers of
the second kind and that the probabilities can also be calculated fropf jhier a discrete
distribution (Johnsort al 1992). Using equations (8) and (1Z)(r) is expressed for very
large f as:

F(C]/(q - 1)) i| égt. (18)

oo [(1 O +0/@—1)
As only the exponential term in (18) depends pnthe bracketed term gives negligible
contributions to the successive terms of the expansio& @j whent — 0 and can be
simply replaced by 1. The factorial moments tend thus to those of a Poisson distribution
of parameterr, when f — oco. We have further observed numerically that the Poisson
distribution is already a very good approximation of the distributioxisef 1) for moderate
values of f (figure 1), at least of the order of some tens, with a parameter

q q
Ap=(s)y—1=2x, - m‘p <q_1) -1

whereW (x) is the digamma function (Abramowitz and Stegun 1965). As the parameter of
the Poisson distributioh, — oo with f, the cumulative distribution ofk —)Lg)/ki/z tends

to the cumulative distribution of a standard Gauss distribufig@, 1). Consequently the
cumulative distribution of the fragment siZeis asymptotically equal to that of a lognormal
distribution. Such distributions of fragment sizes are often found experimentally (see for
instance Bakeet al 1992, Ishii and Matsushita 1992, Sotolongo-Costal 1996). The
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Figure 1. A comparison of the distribution of fragment siz&s(s) = ns(f)/m(f) (open
squares) foy = 4 and f = 20 with a Poisson distribution of parameter = 3.22 shifted by
+1 (s = k+ 1, open circles) and with a binned normal distribution (mead.22, standard
deviation= 2.88, crosses).

convergence to a normal distribution of [dg is observed from our numerical simulations
to be much faster wheaq is selected at random at every breakup according to some given
distribution.

4. Consequences of the simple model and conclusion

The exact distribution (12) is simple enough to allow computation of various average
quantities. For example, using relations (8) and (12), the momérits write:

(ny, = L@/ -1 L(f +(@*™"/(q = 1))
L(gt™/(q—1) T(f+(q/(g—D)
from which we calculate for instancel); = 1/m(f) (relation (3)) as expected. For
large values off, the momentsL"); show a power-law behaviouf L"), o< = with

B, =q/(q —D[1—(1/¢9™)]) and therefore:

(Ln>f _g1-m
Ly, et (20)

The latter result shows in particular that there is no characteristic length since all these
guantities scale differently witlf. Let us mention that asymptotic multiscaling behaviour
has also been reported for the fragment length in a simple model of oriented 2-dimensional
fragmentation, where the fragments are always rectangular (Krapivsky and Ben-Naim 1994).
By contrast, the area distribution function derived for the latter model is characterized by
a single length scale. Relation (20) moreover shows that the study of the dependence of
(Lz)f/<L)f on (L), provides a direct measure of the valuegosince:

2
E o (L)a.
(L)

Relation (21) remains valid whepis no longer fixed but is selected at random before
each breakup according to a distribution with a finite mgamd a finite variance (figure 2).
However, a simple calculation shows that the exponggtHas to be replaced in that case

by (1—(%))/(5—1). That expression, which is derived by replacing a sunf aidependent

(19)

e

(21)
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Figure 2. Iog(%) versus log(L)): before each fragmentation,is chosen at random between
2 and 10. The points are plotted fgr=20n (n = 1, ..., 10). The slope of the least-squares

line is 0.160 while’ -2 = 0.157.

and identically distributed random variablgsby f times the common average, holds only

for f — oo or wheng has a fixed value. It constitutes, however, a good approximation of
the actual exponent even for moderate valueg gfigure 2). In this sort of fragmentation
process, the plot (21) can be used to suspect multifragmentation 2) when the slope

in figure 2 is found different from}. It would be interesting to know if other analytical
models show behaviour like relation (21). We finally mention that 2-dimensional plots of
points (x, f) (1 < f < 10000 andy = 2), wherex(0 < x < 1) is the abscissa of the point

at which the initial segment of length 1 is broken at fragmentation nurfibproduce some

sort of statistically self-similar patterns in which points concentrate into bands which are
parallel to thef-axis and which are in turn constituted of narrower bands. The formation of
bands may be partly explained by the random selection of fragments whatever their length:
the breaking of a selected segment increases locally the number of smaller segments that is
the probability to select again a breaking point in the same region etc. Such patterns, which
remain, however, somewhat intriguing, suggest that the behaviour of the seqyemig
fragmentation model described in section 3 is worth further investigation.
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