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Abstract. A simple model of discrete sequential fragmentation consists in first breaking a unit
segment intoq(> 2) pieces of equal length. A fragment is then selected at random among all
fragments and broken in turn intoq pieces of equal length and so onad infinitum. Fragments of
sizeL = q−s (s = 0, . . . , f ) are thus produced afterf fragmentation events. The distribution of
the ensemble averaged number of fragments of ‘size’s is calculated exactly in terms of signless
Stirling numbers of the first kind and shown to tend asymptotically to a Poisson distribution
with parameter(q/(q − 1)) log(f ). An asymptotic lognormal distribution is thus found for the
distribution ofL.

1. Introduction

Fragmentation phenomena are encountered in numerous scientific fields from nuclear to
astronomic scale, in real or in abstract spaces (see for instance Grady and Kipp 1985,
Derrida and Flyvbjerg 1985, Brown 1989, Redner 1990, Mekjian 1990, Mekjian and Lee
1991, Englman 1991, Botet and Ploszajczak 1994, Elattariet al 1995 and references therein).
Numerous thorough experimental and theoretical efforts are devoted, among other things, to
the characterization of their ubiquitous properties, such as their scale-independent properties.
Various semi-empirical distributions have been proposed to describe the distributions of the
fragment sizes: Mott, Weibull, exponential,. . . , lognormal. Bakeret al (1992) have recently
argued that the lognormal distribution (Aitchison and Brown 1957) is particularly suitable
in that context. It seems interesting, thus, to investigate the distributions of fragment sizes
in simple and exactly soluble models, with a small number of free parameters. One such
model of discrete sequential fragmentation is described in the present paper. It is inspired
by a model of 2-dimensional cellular structures generated by a sequential fragmentation
procedure: at a given time, one cell is selected at random among all cells and broken into
two cells and the process is iterated (Delannay and Le Caër 1994). Strongly disordered
structures, which have remarkable topological properties, are thus constructed. A first
simplified approach to the characterization of their metric properties consists in breaking the
selected cell into two cells of equal areas. For further simplification, the starting structure
is a hexagonal 2-dimensional structure with cells of identical areas. A straightforward
generalization of the latter fragmentation process yields the model investigated in the
following.
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2. A soluble model of discrete sequential fragmentation

The present model is more precisely a particular case of the usual rate equation approach
which is used to describe fragmentation. The system is supposed to break up sequentially
and no recombination is allowed. The discrete set of all possible fragment sizes can be
arranged in order of decreasing sizes and indexed by an integers, the size indexed by
s = 0 being the initial maximum size. The functionns(f ) yields the average number of
s-fragments afterf fragmentations. The evolution of the distribution of fragment sizes is
then given by (Petersonet al 1985):

ns(f + 1) − ns(f ) = −a(s)ns(f ) +
s−1∑
s ′=0

a(s ′)b(s|s ′)ns ′(f ) (1)

where the numberf of fragmentations plays the role of time, so that the left-hand side term
of (1) is just analogous to∂ns/∂t . In (1), the functiona(s) is the rate at whichs-fragments
disappear by breakup whileb(s|s ′) is the rate at whichs-fragments are produced by the
breakup ofs ′-fragments. Both are assumed to be independent off . In the present work, we
focus on the case where all fragments have the same probability to be selected for breakup.
In other words, the rate functiona(s) is independent ofs and equals then 1/m(f ), where
m(f ) is the total number of fragments after exactlyf breakups. Summing (1) over all
possible sizes yields:

m(f + 1) = m(f ) +
∑

s ′ ns ′(f )(
∑∞

s=s ′+1 b(s|s ′))∑
s ′ ns ′(f )

− 1. (2)

The sum
∑∞

s=s ′+1 b(s|s ′) is just the average number of fragments produced during
breakup of as ′-fragment. Let us suppose that this quantity, called hereq, independent
of f is also independent ofs ′: q is a constant all along the cascade of fragmentations. The
average number of fragments is thus:

m(f ) = 1 + (q − 1)f. (3)

Only the binary case(q = 2) is treated, usually because of its simplicity. In some
experiments, however, the proper value ofq, if any, is still in debate. For example, in
nuclear experiments of heavy-ion fragmentation the fact is that a controversy holds between
proponents of the sequential binary fragmentation(q = 2) and those of multifragmentation
(q = ∞) (Grosset al 1982, Borderieet al 1992).

One of the new results presented below shows that observable quantities can be found
in some cases which allow experimental determination of the parameterq. For now, let us
replacea(s) by 1/(1 + (q − 1)f ) in equation (1) to write the rate equation as:

ns(f + 1) = 1

f + (1/(q − 1))

[
f ns(f ) +

s−1∑
s ′=0

b(s|s ′)
q − 1

ns ′(f )

]
. (4)

Equation (4) can be considered as a matrix recurrence equation acting on the vectorn(f )

whose components arens(f ). The dimension ofn after any number of fragmentations
can be extended beyond its minimum value to any desired value by adding as many zeros
as necessary. IfA denotes the lower triangular matrix withb(s|s ′) as its (s, s ′) element
(s > s ′ + 1), (4) may thus be rewritten as:

n(f + 1) = 1

f + (1/(q − 1))

[
f I + A

(q − 1)

]
n(f ). (5)
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The solution of (5) then writes:

n(f ) = Cf (q)

{ f −1∏
k=0

[
kI + A

q − 1

] }
n(0) (6)

where the coefficientCf (q) is:

Cf (q) =
f −1∏
k=0

[
k + 1

q − 1

]−1

= 0(1/(q − 1))

0(f + (1/(q − 1)))
. (7)

The product
∏f −1

k=0 [k+x] = 0(f +x)

0(x)
can be expanded as a finite sum of powers ofx with

signless Stirling numbers of the first kind, noted here|S(j)

f |, as coefficients (Abramowitz
and Stegun 1965, Johnsonet al 1992):

f −1∏
k=0

[k + x] =
f∑

j=0

|S(j)

f |xj . (8)

We recall that the|S(j)

f | satisfy the following recurrence relation:

|S(j)

f | = (f − 1)|S(j)

f −1| + |S(j−1)

f −1 | (9)

with |S(0)

0 | = 1 and |S(0)
f | = 0 for f > 0 among others (Abramowitz and Stegun 1965,

Johnsonet al 1992). AsI and A commute, the product of matrices which appears in (6)
can be expanded in the same way as the product (8), simply replacingx by A/(q − 1):

f −1∏
k=0

[
kI + A

(q − 1)

]
=

f∑
j=0

|S(j)

f | Aj

(q − 1)j
. (10)

Under the assumption that the overall rate of breakup is independent of the size during
this sequentialq-nary fragmentation process, the average size distribution of the fragments
is thus seen to be written down naturally as a finite combination of Stirling numbers:

n(f ) = Cf (q)

f∑
j=0

|S(j)

f | Ajn(0)

(q − 1)j
. (11)

The remaining technical problem is to be able to calculate the vectorsAjn(0), given
the initial state of the systemn(0).

3. An explicit solution for a simple model of sequentialq-nary fragmentation process

Hereafter, we have chosen to investigate a simple model of sequentialq-nary fragmentation
process: consider a segment of length 1 and break it first intoq(q > 2) pieces of length 1/q.
A fragment is selected at random amongst theq latter fragments and is broken in turn into
q pieces of length 1/q2. The process is then pursued: at every step a fragment is selected
at random amongst all fragments and broken intoq fragments of equal lengthL = q−s .
We will investigate the ensemble averaged distributionns(f ) of the number of fragments of
lengthL = 1/qs after f fragmentation events(s = 0, . . . , f ), wheres = − log(L)/ log(q)

is the size index (section 2). As a fragment of length 1/qi is broken intoq fragments
of length 1/q(i+1), the matrixA is filled up with elements equal to zero, except for the
elementsAi+1, i = q. The matricesAj have all the same sort of structure with elements
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(Aj )i+j,i = qj as the sole non-zero elements. We deduce from (11) that the average number
of s-fragments afterf fragmentations is(s = 0, . . . , f ):

ns(f ) = Cf (q)

[
q

q − 1

]s

|S(s)
f |. (12)

Using (12) and definingHfm
(x) as:

Hfm
(x) =

f −1∑
k=0

1

(x + k)m
(13)

it is straightforward to deduce that the average〈s〉f is:

〈s〉f = xHf1(x) (14)

with x = q/(q − 1). Similarly:

〈(s − 〈s〉)2〉f = xHf1(x) − x2Hf2(x) (15)

and

〈(s − 〈s〉)3〉f = xHf1(x) − 3x2Hf2(x) + 2x3Hf3(x). (16)

The Hfm
(x)s are finite constants form > 1 whenf → ∞ while Hf1(x) is asymptotically

equal to log(f ) (Abramowitz and Stegun 1965). The first three moments about the mean
are thus asymptotically equal to:

λg = q

q − 1
log(f ). (17)

This suggests that the asymptotic distribution ofk = s−1 (s−1 because prob(s = 0) = 0) is
a Poisson distribution. For proving it, we calculate the generating functionG(t) = 〈(1+t)k〉f
whose expansion whent → 0 yields the factorial momentsµ′

[n] = 〈∏n−1
p=0[k + p]〉f . For a

Poisson distribution of parameterλ, G(t) is equal to eλt with µ′
[n] = λn. Let us recall that

the classical moments are linearly related to the factorial moments via Stirling numbers of
the second kind and that the probabilities can also be calculated from theµ′

[n] for a discrete
distribution (Johnsonet al 1992). Using equations (8) and (12),G(t) is expressed for very
largef as:

G(t) =
[

0(q/(q − 1))

(1 + t)0(q(1 + t)/(q − 1))

]
eλgt . (18)

As only the exponential term in (18) depends onf , the bracketed term gives negligible
contributions to the successive terms of the expansion ofG(t) when t → 0 and can be
simply replaced by 1. The factorial moments tend thus to those of a Poisson distribution
of parameterλg when f → ∞. We have further observed numerically that the Poisson
distribution is already a very good approximation of the distribution of(s −1) for moderate
values off (figure 1), at least of the order of some tens, with a parameter

λf = 〈s〉f − 1 = λg − q

q − 1
9

(
q

q − 1

)
− 1

where9(x) is the digamma function (Abramowitz and Stegun 1965). As the parameter of
the Poisson distributionλg → ∞ with f , the cumulative distribution of(k −λg)/λ

1/2
g tends

to the cumulative distribution of a standard Gauss distributionN(0, 1). Consequently the
cumulative distribution of the fragment sizeL is asymptotically equal to that of a lognormal
distribution. Such distributions of fragment sizes are often found experimentally (see for
instance Bakeret al 1992, Ishii and Matsushita 1992, Sotolongo-Costaet al 1996). The
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Figure 1. A comparison of the distribution of fragment sizesPf (s) = ns(f )/m(f ) (open
squares) forq = 4 andf = 20 with a Poisson distribution of parameterλf = 3.22 shifted by
+1 (s = k + 1, open circles) and with a binned normal distribution (mean= 4.22, standard
deviation= 2.88, crosses).

convergence to a normal distribution of log(L) is observed from our numerical simulations
to be much faster whenq is selected at random at every breakup according to some given
distribution.

4. Consequences of the simple model and conclusion

The exact distribution (12) is simple enough to allow computation of various average
quantities. For example, using relations (8) and (12), the moments〈Ln〉f write:

〈Ln〉f = 0(q/(q − 1))

0(q1−n/(q − 1))

0(f + (q1−n/(q − 1)))

0(f + (q/(q − 1)))
(19)

from which we calculate for instance〈L〉f = 1/m(f ) (relation (3)) as expected. For
large values off , the moments〈Ln〉f show a power-law behaviour (〈Ln〉f ∝ f −βn with
βn = q/(q − 1)[1 − (1/qn)]) and therefore:

〈Ln〉f
〈Ln−1〉f ∝ f −q(1−n)

. (20)

The latter result shows in particular that there is no characteristic length since all these
quantities scale differently withf . Let us mention that asymptotic multiscaling behaviour
has also been reported for the fragment length in a simple model of oriented 2-dimensional
fragmentation, where the fragments are always rectangular (Krapivsky and Ben-Naim 1994).
By contrast, the area distribution function derived for the latter model is characterized by
a single length scale. Relation (20) moreover shows that the study of the dependence of
〈L2〉f /〈L〉f on 〈L〉f provides a direct measure of the value ofq since:

〈L2〉
〈L〉 ∝ 〈L〉 1

q . (21)

Relation (21) remains valid whenq is no longer fixed but is selected at random before
each breakup according to a distribution with a finite meanq̄ and a finite variance (figure 2).
However, a simple calculation shows that the exponent 1/q has to be replaced in that case

by (1−( 1
q
))/(q̄−1). That expression, which is derived by replacing a sum off independent



6698 R Delannay et al

Figure 2. log(
〈L2〉
〈L〉 ) versus log(〈L〉): before each fragmentation,q is chosen at random between

2 and 10. The points are plotted forf = 20n (n = 1, . . . , 10). The slope of the least-squares

line is 0.160 while1−(1/q)
(q̄−1)

= 0.157.

and identically distributed random variablesqi by f times the common average, holds only
for f → ∞ or whenq has a fixed value. It constitutes, however, a good approximation of
the actual exponent even for moderate values off (figure 2). In this sort of fragmentation
process, the plot (21) can be used to suspect multifragmentation(q > 2) when the slope
in figure 2 is found different from1

2. It would be interesting to know if other analytical
models show behaviour like relation (21). We finally mention that 2-dimensional plots of
points(x, f ) (1 6 f 6 10 000 andq = 2), wherex(0 < x < 1) is the abscissa of the point
at which the initial segment of length 1 is broken at fragmentation numberf , produce some
sort of statistically self-similar patterns in which points concentrate into bands which are
parallel to thef -axis and which are in turn constituted of narrower bands. The formation of
bands may be partly explained by the random selection of fragments whatever their length:
the breaking of a selected segment increases locally the number of smaller segments that is
the probability to select again a breaking point in the same region etc. Such patterns, which
remain, however, somewhat intriguing, suggest that the behaviour of the sequentialq-nary
fragmentation model described in section 3 is worth further investigation.
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